Problem 13

Three digital clocks A, B, and C run at different rates and do not have simultaneous readings of zero. Figure 1-6 shows simultaneous readings on pairs of the clocks for four occasions. (At the earliest occasion, for example, B reads 25.0 s and C reads 92.0 s .) If two events are 600 s apart on clock A, how far apart are they on (a) clock B and (b) clock C ? (c) When clock A reads 400 s , what does clock B read? (d) When clock C reads 15.0 s , what does clock B read? (Assume negative readings for prezero times.)

Figure 1-6 Problem 13.

Solution

Part (a)
Convert from Clock A to Clock B.

$$
600 \text { s on Clock } \mathrm{A}=600 \underline{\text { s on Clock } \mathrm{A}} \times \frac{(290-125) \text { s on Clock B }}{(512-312) \text { s on Clock A }}=495 \text { s on Clock B }
$$

Part (b)

Convert from Clock A to Clock B to Clock C.

$$
\begin{aligned}
600 \text { s on Clock } \mathrm{A} & =600 \text { s on Clock } \mathrm{A}
\end{aligned} \frac{(290-125) \overline{\text { s on Clock B }}(512-312) \text { s on Clock A }}{} \times \frac{(142-92.0) \text { s on Clock C }}{(200-25.0) \overline{\text { s on Clock B }}}
$$

Part (c)

The aim here is to write a formula for the time on Clock B, given the time on Clock A. Let y be the time on Clock B, and let x be the time on Clock A.

$$
y=m x+b
$$

Two points on this line are $(312,125)$ and $(512,290)$.

$$
\begin{align*}
& 125=312 m+b \tag{1}\\
& 290=512 m+b \tag{2}
\end{align*}
$$

Subtract the respective sides to eliminate b.

$$
-165=-200 \mathrm{~m}
$$

Solve for m.

$$
m=\frac{33}{40}
$$

Substitute this value into either equation (1) or equation (2) to determine b.

$$
125=312\left(\frac{33}{40}\right)+b \quad \rightarrow \quad b=-\frac{662}{5}
$$

The equation of the line is then

$$
y=\frac{33}{40} x-\frac{662}{5} .
$$

Therefore, when Clock A is at 400 s the time on Clock B is

$$
\begin{aligned}
y & =\frac{33}{40}(400)-\frac{662}{5} \\
& =\frac{988}{5} \mathrm{~s} \\
& \approx 198 \mathrm{~s} .
\end{aligned}
$$

Part (d)

The aim here is to write a formula for the time on Clock B, given the time on Clock C. Let y be the time on Clock B, and let x be the time on Clock C.

$$
y=m x+b
$$

Two points on this line are $(92.0,25.0)$ and $(142,200)$.

$$
\begin{align*}
25.0 & =92.0 m+b \tag{3}\\
200 & =142 m+b \tag{4}
\end{align*}
$$

Subtract the respective sides to eliminate b.

$$
-175=-50 \mathrm{~m}
$$

Solve for m.

$$
m=\frac{7}{2}
$$

Substitute this value into either equation (3) or equation (4) to determine b.

$$
25.0=92.0\left(\frac{7}{2}\right)+b \quad \rightarrow \quad b=-297
$$

The equation of the line is then

$$
y=\frac{7}{2} x-297
$$

Therefore, when Clock C is at 15 s the time on Clock B is

$$
\begin{aligned}
y & =\frac{7}{2}(15)-297 \\
& =-\frac{489}{2} \mathrm{~s} \\
& \approx-245 \mathrm{~s}
\end{aligned}
$$

